		No.	DS10-Q002
CRE	Datasheet	Initial Date 2023-02-22	2023-02-22
OQ	OQQS341	Written Team	R&D Dept. GH Zheng

I Preview

PN	OQQS341
Description	400G QSFP-DD LR4 1310nm-CWDM 10KM LC DDMI 0~70 °C

II Contents

- 1. Features
- 2. Applications
- 3. Description
- 4. Absolute maximum Ratings
- 5. Operating Environment
- 6. Optical Characteristics
- 7. Electrical Specifications
- 8. Pin Descriptions
- 9. Digital Diagnostic Functions
- 10. Mechanical Dimensions
- 11. Model Ordering Information

III Revision History

No.	Date	Items	Change Recording	Ver.	Rev.	Customer
1	2023-02-22	All	Initial registration	000	000	Standard
2						
3						
4						
5						
6						

	Datasheet	DS10-Q002 Final Rev.: 20	23-02-22
Product	400G QSFP-DD transceiver OQ serials	Ver.	001
D AN	0005241	Rev.	000
Part No.	OQQS341	Page	2 / 14

1. Features

- ◆ QSFP-DD MSA compliant
- ◆ 4 CWDM lanes MUX/DEMUX design
- ◆ 100G Lambda MSA 400G-LR4 Specification compliant
- Up to 10km transmission on single mode fiber (SMF) with FEC
- ◆ 8x53.125Gb/s electrical interface (400GAUI-8)
- Data Rate 106.25Gbps (PAM4) per channel.
- ◆ Maximum power consumption 12W
- ◆ Duplex LC connector
- ◆ RoHS compliant
- ◆ Operating case temperature: Standard: 0 to +70°C

2. Applications

- Data Center Interconnect
- 400G Ethernet
- ◆ Infiniband interconnects
- Enterprise networking

3. Description

The OCRECOM's OQQS341 is a 400Gb/s Quad Small Form Factor Pluggable-double density (QSFP-DD) optical module designed for 10km optical communication applications. The module converts 8 channels of 50Gb/s (PAM4) electrical input data to 4 channels of CWDM optical signals, and multiplexes them into a single channel for 400Gb/s optical transmission. Reversely, on the receiver side, the module optically de-multiplexes a 400Gb/s optical input into 4 channels of CWDM optical signals, and converts them to 8 channels of 50Gb/s (PAM4) electrical output data.

The central wavelengths of the 4 CWDM channels are 1271, 1291, 1311 and 1331 nm as members of the CWDM wavelength grid defined in ITU-T G.694.2. It contains a duplex LC connector for the optical interface and a 76-pin connector for the electrical interface. To minimize the optical dispersion in the long-haul system, single-mode fiber (SMF) has to be applied in this module. Host FEC is required to support up to 10km fiber transmission

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP-DD Multi-Source Agreement (MSA) Type 2. It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

The module incorporates 4 independent channels on CWDM4 1271/1291/1311/1331nm center wavelength, operating at 100G per channel. The transmitter path incorporates a quad channel EML driver and EML lasers together with an optical multiplexer. On the receiver path, an optical de-multiplexer is coupled to a 4 channel photodiode array. A DSP basis gearbox is used to convert 8 channels of 25GBaud PAM4 signals into 4 channels of 50GBaud PAM4 signals and also an 8-channel retimer and FEC block are integrated in this DSP. The electrical interface is compliant with IEEE 802.3bs and QSFP-DD MSA in the transmitting and receiving directions, and the optical interface is compliant to IEEE 802.3bs with duplex LC connector.

OCRE COMMUNICATION LIMITED	DESIGN	CHECK	CHECK	APPROVAL
Web: www.ocrecom.com				
E-Mail: sales@ocrecom.com				
Add. Dist.A, Building 6, Bay on the six block, Xixiang,				
Baoan Dist, Shenzhen, China 518000				
Tel: +86 755 2335 3855 Fax: +86 755 2335 3855				

	DS10-Q002 Final Rev.: 20	23-02-22	
Product	400G QSFP-DD transceiver OQ serials	Ver.	001
D 431	0008241	Rev.	000
Part No.	OQQS341	Page	3 / 14

A single +3.3V power supply is required to power up this product. All the power supply pins are internally connected and should be applied concurrently. As per MSA specifications the module offers seven low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, InitMode, ModPrsL and IntL.

Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus — individual ModSelL lines must be used.

Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the memory map.

The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

Initialize Mode (InitMode) is an input signal. It is pulled up to Vcc in the QSFP-DD module. The InitMode signal allows the host to define whether the QSFP-DD module will initialize under host software control (InitMode asserted High) or module hardware control (InitMode deasserted Low). Under host software control, the module shall remain in Low Power Mode until software enables the transition to High Power Mode, as defined in the QSFP-DD Management Interface Specification. Under hardware control (InitMode de-asserted Low), the module may immediately transition to High Power Mode after the management interface is initialized. The host shall not change the state of this signal while the module is present. In legacy QSFP applications, this signal is named LPMode. See SFF-8679 for LPMode signal description.

Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground through a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low" state. Interrupt (IntL) is an output pin. "Low" indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board.

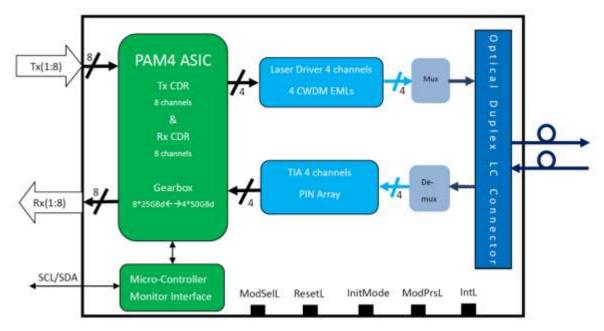


Figure 1 Block Diagram of transceiver

OCRE COMMUNICATION LIMITED	DESIGN	CHECK	CHECK	APPROVAL
Web: www.ocrecom.com				
E-Mail: sales@ocrecom.com				
Add. Dist.A, Building 6, Bay on the six block, Xixiang,				
Baoan Dist, Shenzhen, China 518000				
Tel: +86 755 2335 3855 Fax: +86 755 2335 3855				

	DS10-Q002 Final Rev.: 2023-02-22		
Product	400G QSFP-DD transceiver OQ serials	Ver.	001
D AN	0005341	Rev.	000
Part No.	OQQS341	Page	4 / 14

4. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Note
Storage Temperature	TST	-4 0	85	℃	
Relative Humidity(non-condensing)	RH	0	85	%	
Operating Case Temperature	TOPC	0	70	℃	
Supply Voltage	VCC	-0.5	3.6	V	
Damage Threshold, each Lane	TH_d	5.0		dBm	

5. Operating Environment

Parameter	Symbol	Min	Typical	Max	Unit	Note
Operating Case Temperature	TOPC	0		70	$^{\circ}\!\mathbb{C}$	
Power Supply Voltage	VCC	3.13	3.3	3.47	V	
Power dissipation		-		12	W	
Data Rate	DR	- X	26.5625		Gbps	PAM4
Data Speed Tolerance	ΔDR	-100	7>	+100	ppm	
Pre-FEC Bit Error Ratio			>	$2.4x10^4$		
Post-FEC Bit Error Ratio				1x10 ⁻¹²		FEC provided by host system
Link Distance with G.652	D	0.002		10	km	FEC required on host system to support maximum distance

6. Optical Characteristics

All parameters are specified under the recommended operating conditions with PRBS31 data pattern unless otherwise specified.

	Trar	smitter				
Parameter	Symbol	Min	Typical	Max	Unit	Notes
	LO	1264.5	1271	1277.5	nm	
Wavelength Assignment	L1	1284.5	1291	1297.5	nm	
	L2	1304.5	1311	1317.5	nm	
	L3	1324.5	1331	1337.5	nm	
Data Rate, each Lane		53.125 ± 100 ppm		GBd		
Modulation Format		PAM4				
Side Mode Suppression Ratio	SMSR	30			dB	
OCRE COMMUNICATION LIMITED	DESIGN	CHECK	CHE	CK	APPROVAL	

OCRE COMMUNICATION LIMITED
Web: www.ocrecom.com
E-Mail: sales@ocrecom.com
Add. Dist.A, Building 6, Bay on the six block, Xixiang, Baoan Dist, Shenzhen, China 518000
Tel: +86 755 2335 3855 Fax: +86 755 2335 3855

	DS10-Q002 Final Rev.: 2023-02-22		
Product	400G QSFP-DD transceiver OQ serials	Ver.	001
D AN	0006241	Rev.	000
Part No.	OQQS341	Page	5 / 14

Total Average Launch Power	P_{T}			10	dBm	
Average Launch Power, each lane	P _{AVG}	-2.8	-	+4	dBm	1
Optical Modulation Amplitude (OMA)	P _{OMA}	0.2	-	+4.2	dBm	2
Launch Power in OMAouter minus		1.2				
TDECQ, each Lane for ER≥4.5dB for		-1.2			dB	
ER < 4.5dB		-1.1				
Transmitter and Dispersion Eye Closure	TDECO			20	ID	
for PAM4, each Lane	TDECQ			3.9	dB	
TDECQ-10*log10(Ceq), each Lane				3.9	dB	3
Difference in Launch Power between any	D. 1'0		/(TD.	
two lanes	Ptx,diff			4	dB	
Extinction Ratio	ER	3.5			dB	
RIN₂OMA	RIN			-136	dB/Hz	
Optical Return Loss Tolerance	TOL		\ \ \ \	15.6	dB	
Transmitter Reflectance	RT		Y	-26	dB	
Transmitter Transition Time	<i>(</i>	$\langle \lambda \rangle$		17	PS	
Average Launch Power OFF Transmitter,	D			-20	dBm	
each Lane	Poff	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-20	UDIII	
	Re	ceiver				
Data Rate, each Lane		5.	3.125 ± 100 ppn	n	GBd	
Modulation Format			PAM4			
Damage Threshold	THd	5.0			dBm	4
Average Receive Power, each Lane		-9.1		4.0	dBm	5
Receive Power (OMA), each Lane				4.2	dBm	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	QET I			Equation	tr.	
Receiver Sensitivity in OMA, each Lane	SEN			(1)	dBm	6
Stressed Receiver Sensitivity (OMA), each	SRS			-4 .1	dBm	7
Lane	J1W			11.1	312111	,
Receiver Reflectance	R_R			-26	dB	
Difference in Receive Power between any Two Lanes (OMA)	Prx,diff			4.6	dB	
Signal Loss Assert Threshold	LOSA	-20			dBm	

OCRE COMMUNICATION LIMITED	DESIGN	CHECK	CHECK	APPROVAL
Web: www.ocrecom.com				
E-Mail: sales@ocrecom.com				
Add. Dist.A, Building 6, Bay on the six block, Xixiang,				
Baoan Dist, Shenzhen, China 518000				
Tel: +86 755 2335 3855 Fax: +86 755 2335 3855				

	DS10-Q002 Final Rev.: 2023-02-22		
Product	400G QSFP-DD transceiver OQ serials	Ver.	001
D (N)	0006341	Rev.	000
Part No.	OQQS341	Page	6 / 14

Signal Loss Deassert Threshold	LOSD			-12.1	dBm		
LOS Hysteresis	LOSH	0.5	-	-	dB		
Conditions of Stress Receiver Sensitivity Test (Note 8)							
Stressed Eye Closure for PAM4 (SECQ),			3.9		dB		
Lane under Test							
SECQ-10*log10(Ceq), Lane under Test				3.9	dB		
OMA _{outer} of each Aggressor Lane			0.5		dBm		

Notes:

- 1, Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. Even if the TDECQ < 1.4 dB for an extinction ratio of \ge 4.5 dB or TDECQ < 1.3 dB for an extinction ratio of < 4.5 dB, the OMAouter (min) must exceed the minimum value specified here.
- 3. Ceq is a coefficient defined in IEEE Std 802.3-2018 clause 121.8.5.3 which accounts for reference equalizer noise enhancement.
- 4. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 5. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.
- 6. Receiver sensitivity (OMAouter), each lane (max) is informative and is defined for a transmitter with a value of SECQ up to 3.9 dB. It should meet Equation (1), which is illustrated in Figure 4.

$$RS = \max(-6.6, SECQ - 8.0) dBm(1)$$

Where:

RS is the receiver sensitivity, and

SECQ is the SECQ of the transmitter used to measure the receiver sensitivity.

- 7. Measured with conformance test signal at TP3 for the BER equal to 2.4x10-4.
- 8. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

OCRE COMMUNICATION LIMITED	DESIGN	CHECK	CHECK	APPROVAL
Web: www.ocrecom.com				
E-Mail: sales@ocrecom.com				
Add. Dist.A, Building 6, Bay on the six block, Xixiang,				
Baoan Dist, Shenzhen, China 518000				
Tel: +86 755 2335 3855 Fax: +86 755 2335 3855				

	DS10-Q002 Final Rev.: 2023-02-22		
Product	400G QSFP-DD transceiver OQ serials	Ver.	001
D (N	0005341	Rev.	000
Part No.	OQQS341	Page	7 / 14

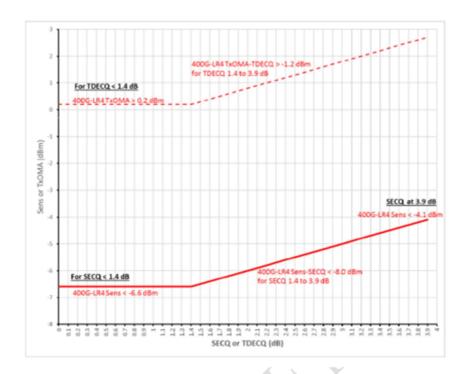


Figure 2. Illustration of Receiver Sensitivity Mask for 400G-LR4

7. Electrical Specifications

Parameter	Test Point	Min	Typical	N	I ax	Units	Notes
Power Consumption				1	12	W	
Supply Current	Icc			3.	.64	A	
		Fransmitter (ea	ch Lane)				
Signaling Rate, each Lane	TP1	26.5	$5625 \pm 100_{1}$	ppm		GBd	
Differential input Voltage pk-pk Tolerance	TP1a	900				mV	1
Differential Termination Resistance Mismatch	TP1			1	10	%	
Differential Input Return Loss (SDD11)	TP1	IEEE 802.3- 2015 Equation (83E-5)				dB	
Differential to Common Mode Input Return Loss	TP1	IEEE 802.3- 2015 Equation				dB	
OCRE COMMUNICATION LIMIT Web: www.ocrecom.com	ED	DESIGN	CHECK		CHEC	CK	APPROVAL

E-Mail: sales@ocrecom.com

	DS10-Q002 Final Rev.: 2023-02-22		
Product	400G QSFP-DD transceiver OQ serials	Ver.	001
Part No.	0005341	Rev.	000
	OQQS341	Page	8 / 14

		(83E-6)							
Stressed Input Test	TP1a	See IEE	E 802.3bs 1	20E.3.4.1		2			
Single-ended Voltage Tolerance Range (Min)	TP1a		-0.4 to 3.3		V				
DC Common Mode Input Voltage	TP1	-350		2850	mV	3			
	Receiver (each Lane)								
Signaling Rate, each lane	TP4	26.	5625 ± 100	ppm	GBd				
Differential output Voltage, pk-pk	TP4			900	mV _{PP}				
AC Common Mode Output Voltage, RMS	TP4			17.5	mV	y			
Differential Termination Resistance Mismatch	TP4		4	10	%				
Differential Output Return Loss	TP4	IEEE 802.3- 2015 Equation (83E-2)							
Common to Differential Mode Conversion Return Loss	TP4	IEEE 802.3- 2015 Equation (83E-3)	<i>Y</i>						
Transition Time, 20 to 80%	TP4	9.5			ps				
Near-end Eye Symmetry Mask Width (ESMW)	TP4		0.265		mV				
Near-end Eye Height, Differential	TP4	70			mV				
Far-end Eye Symmetry Mask Width (ESMW)	TP4		0.2		UI				
Far-end Eye Height, Differential	TP4	30			mV				
Far-end Pre-cursor ISI Ratio	TP4	4.5		2.5	%				
Common Mode Output Voltage (Vcm)	TP4	-350		2850	mV	3			

Notes:

 $1. With the exception to IEEE\,802.3 bs\,120E.3.1.2\,that\,the pattern is PRBS31Q\,or\,scrambled\,idle.$

OCRE COMMUNICATION LIMITED	DESIGN	CHECK	CHECK	APPROVAL
Web: www.ocrecom.com				
E-Mail: sales@ocrecom.com				
Add. Dist.A, Building 6, Bay on the six block, Xixiang,				
Baoan Dist, Shenzhen, China 518000				
Tel: +86 755 2335 3855 Fax: +86 755 2335 3855				

	DS10-Q002 Final Rev.: 2023-02-22		
Product	400G QSFP-DD transceiver OQ serials	Ver.	001
D AN	0000341	Rev.	000
Part No.	OQQS341	Page	9 / 14

- 2. Meets BER specified in IEEE 802.3bs 120E.1.1.
- 3. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

8. Pin Descriptions

The electrical pinout of the QSFP-DD module is shown in Figure 3 below.

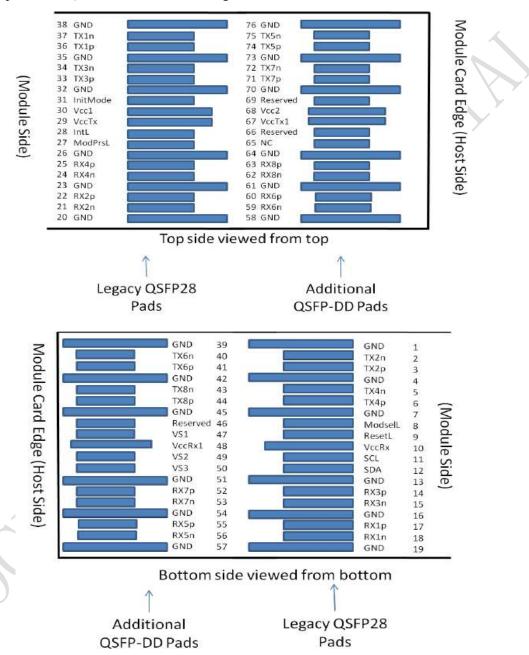


Figure 3 MSA Compliant Connector

PIN	Logic	Symbol	Description	Plug Sequence	Notes
1		GND	Ground	1B	1

DESIGN	CHECK	CHECK	APPROVAL
	DESIGN	DESIGN CHECK	DESIGN CHECK CHECK

	Datasheet	DS10-Q002 Final Rev.: 20	23-02-22
Product	400G QSFP-DD transceiver OQ serials	Ver.	001
D AN	0005241	Rev. 000	000
Part No.	OQQS341	Page	10 / 14

2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B	
4		GND	Ground	1B	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B	
7		GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	3B	,
9	LVTTL-I	ResetL	Module Reset	3B	
10		VccRx	+3.3V Power Supply Receiver	2B	2
11	LVCMOS-I/O	SCL	2-wire serial interface clock	3B	
12	LVCMOS-I/O	SDA	2-wire serial interface data	3B	
13		GND	Ground	1B	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B	
15	CML-O	Rx3n	Receiver Inverted Data Output	3B	
16		GND	Ground	1B	1
17	CML-O	Rxlp	Receiver Non-Inverted Data Output	3B	
18	CML-O	Rx1n	Receiver Inverted Data Output	3B	
19		GND	Ground	1B	1
20		GND	Ground	1B	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3B	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B	
23		GND	Ground	1B	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3B	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B	
26		GND	Ground	1B	1
27	LVTTL-O	ModPrsL	Module Present	3B	
28	LVTTL-O	IntL	Interrupt	3В	
29		VccTx	+3.3V Power supply transmitter	2B	2
30		Vcc1	+3.3V Power supply	2B	2
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	3B	

OCRE COMMUNICATION LIMITED	DESIGN	CHECK	CHECK	APPROVAL
Web: www.ocrecom.com				
E-Mail: sales@ocrecom.com				
Add. Dist.A, Building 6, Bay on the six block, Xixiang,				
Baoan Dist, Shenzhen, China 518000				
Tel: +86 755 2335 3855 Fax: +86 755 2335 3855				

	DS10-Q002 Final Rev.: 20	23-02-22	
Product	400G QSFP-DD transceiver OQ serials	Ver.	001
Part No.	0005341	Rev.	000
	OQQS341	Page	11 / 14

Second S	32		GND	Ground	1B	1
CML-I Tx3n		CMLI				1
35			-	1		
36 CML-I Tx1p Transmitter Non-Inverted Data Input 3B 37 CML-I Tx1n Transmitter Inverted Data Input 3B 38 GND Ground 1B 1 39 GND Ground 1A 1 40 CML-I Tx6n Transmitter Inverted Data Input 3A 41 CML-I Tx6p Transmitter Non-Inverted Data Input 3A 42 GND Ground 1A 1 43 CML-I Tx8p Transmitter Inverted Data Input 3A 44 CML-I Tx8p Transmitter Non-Inverted Data Input 3A 45 GND Ground 1A 1 46 Reserved For future use 3A 3 47 VS1 Module Vendor Specific 1 3A 3 48 VccRx1 3:3V Power Supply 2A 2 49 VS2 Module Vendor Specific 2 3A 3 50 VS3 Modul		CML-I		*		
37						1
GND	36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B	
GND	37	CML-I	Txln	Transmitter Inverted Data Input	3B	
40 CML-I Tx6n Transmitter Inverted Data Input 3A 41 CML-I Tx6p Transmitter Non-Inverted Data Input 3A 42 GND Ground 1A 1 43 CML-I Tx8n Transmitter Inverted Data Input 3A 44 CML-I Tx8p Transmitter Non-Inverted Data Input 3A 45 GND Ground 1A 1 46 Reserved For future use 3A 3 47 VS1 Module Vendor Specific 1 3A 3 48 VccRx1 3.3V Power Supply 2A 2 49 VS2 Module Vendor Specific 2 3A 3 50 VS3 Module Vendor Specific 3 3A 3 51 GND Ground 1A 1 52 CML-O Rx7p Receiver Non-Inverted Data Output 3A 53 CML-O Rx5n Receiver Inverted Data Output 3A 55 CML-O	38		GND	Ground	1B	1
41 CML-I Tx6p Transmitter Non-Inverted Data Input 3A 42 GND Ground 1A 1 43 CML-I Tx8n Transmitter Inverted Data Input 3A 44 CML-I Tx8p Transmitter Non-Inverted Data Input 3A 45 GND Ground 1A 1 46 Reserved For future use 3A 3 47 VS1 Module Vendor Specific 1 3A 3 48 VccRx1 3.3V Power Supply 2A 2 49 VS2 Module Vendor Specific 2 3A 3 50 VS3 Module Vendor Specific 2 3A 3 50 VS3 Module Vendor Specific 3 3A 3 51 GND Ground 1A 1 52 CML-O Rx7p Receiver Inverted Data Output 3A 53 CML-O Rx7n Receiver Inverted Data Output 3A 54 GND Receive	39		GND	Ground	1A	1
42 GND Ground 1A 1 43 CML-I Tx8n Transmitter Inverted Data Input 3A 44 CML-I Tx8p Transmitter Non-Inverted Data Input 3A 45 GND Ground 1A 1 46 Reserved For future use 3A 3 47 VS1 Module Vendor Specific 1 3A 3 48 VccRx1 3.3V Power Supply 2A 2 49 VS2 Module Vendor Specific 2 3A 3 50 VS3 Module Vendor Specific 3 3A 3 51 GND Ground 1A 1 52 CML-O Rx7p Receiver Non-Inverted Data Output 3A 53 CML-O Rx7n Receiver Inverted Data Output 3A 54 GND Ground 1A 1 55 CML-O Rx5p Receiver Inverted Data Output 3A 56 CML-O Rx5n Rec	40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	
43 CML-I Tx8n Transmitter Inverted Data Input 3A 44 CML-I Tx8p Transmitter Non-Inverted Data Input 3A 45 GND Ground 1A 1 46 Reserved For future use 3A 3 47 VS1 Module Vendor Specific 1 3A 3 48 VccRx1 3.3V Power Supply 2A 2 49 VS2 Module Vendor Specific 2 3A 3 50 VS3 Module Vendor Specific 3 3A 3 51 GND Ground 1A 1 52 CML-O Rx7p Receiver Non-Inverted Data Output 3A 53 CML-O Rx7n Receiver Inverted Data Output 3A 54 GND Ground 1A 1 55 CML-O Rx5p Receiver Inverted Data Output 3A 56 CML-O Rx5n Receiver Inverted Data Output 3A 57 GND <td< td=""><td>41</td><td>CML-I</td><td>Тх6р</td><td>Transmitter Non-Inverted Data Input</td><td>3A</td><td></td></td<>	41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	3A	
44 CML-I Tx8p Transmitter Non-Inverted Data Input 3A 45 GND Ground 1A 1 46 Reserved For future use 3A 3 47 VS1 Module Vendor Specific 1 3A 3 48 VccRx1 3.3V Power Supply 2A 2 49 VS2 Module Vendor Specific 2 3A 3 50 VS3 Module Vendor Specific 3 3A 3 51 GND Ground 1A 1 52 CML-O Rx7p Receiver Non-Inverted Data Output 3A 53 CML-O Rx7n Receiver Inverted Data Output 3A 54 GND Ground 1A 1 55 CML-O Rx5p Receiver Inverted Data Output 3A 56 CML-O Rx5n Receiver Inverted Data Output 3A 57 GND Ground 1A 1 58 GND Ground 1A <td>42</td> <td></td> <td>GND</td> <td>Ground</td> <td>1A</td> <td>1</td>	42		GND	Ground	1A	1
45 GND Ground 1A 1 46 Reserved For future use 3A 3 47 VS1 Module Vendor Specific 1 3A 3 48 VccRx1 3.3V Power Supply 2A 2 49 VS2 Module Vendor Specific 2 3A 3 50 VS3 Module Vendor Specific 3 3A 3 51 GND Ground 1A 1 52 CML-O Rx7p Receiver Non-Inverted Data Output 3A 53 CML-O Rx7n Receiver Inverted Data Output 3A 54 GND Ground 1A 1 55 CML-O Rx5p Receiver Non-Inverted Data Output 3A 56 CML-O Rx5n Receiver Inverted Data Output 3A 57 GND Ground 1A 1 58 GND Ground 1A 1 59 CML-O Rx6n Receiver Inverted Data Output	43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	
46 Reserved For future use 3A 3 47 VS1 Module Vendor Specific 1 3A 3 48 VccRx1 3.3V Power Supply 2A 2 49 VS2 Module Vendor Specific 2 3A 3 50 VS3 Module Vendor Specific 3 3A 3 51 GND Ground 1A 1 52 CML-O Rx7p Receiver Non-Inverted Data Output 3A 53 CML-O Rx7n Receiver Inverted Data Output 3A 54 GND Ground 1A 1 55 CML-O Rx5p Receiver Inverted Data Output 3A 56 CML-O Rx5n Receiver Inverted Data Output 3A 57 GND Ground 1A 1 58 GND Ground 1A 1 59 CML-O Rx6n Receiver Inverted Data Output 3A 60 CML-O Rx6p Receiver No	44	CML-I	Tx8p	Transmitter Non-Inverted Data Input	3A	
47 VS1 Module Vendor Specific 1 3A 3 48 VccRx1 3.3V Power Supply 2A 2 49 VS2 Module Vendor Specific 2 3A 3 50 VS3 Module Vendor Specific 3 3A 3 51 GND Ground 1A 1 52 CML-O Rx7p Receiver Non-Inverted Data Output 3A 53 CML-O Rx7n Receiver Inverted Data Output 3A 54 GND Ground 1A 1 55 CML-O Rx5p Receiver Non-Inverted Data Output 3A 56 CML-O Rx5n Receiver Inverted Data Output 3A 57 GND Ground 1A 1 58 GND Ground 1A 1 59 CML-O Rx6n Receiver Inverted Data Output 3A 60 CML-O Rx6p Receiver Inverted Data Output 3A	45		GND	Ground	1A	1
48 VccRx1 3.3V Power Supply 2A 2 49 VS2 Module Vendor Specific 2 3A 3 50 VS3 Module Vendor Specific 3 3A 3 51 GND Ground 1A 1 52 CML-O Rx7p Receiver Non-Inverted Data Output 3A 53 CML-O Rx7n Receiver Inverted Data Output 3A 54 GND Ground 1A 1 55 CML-O Rx5p Receiver Non-Inverted Data Output 3A 56 CML-O Rx5n Receiver Inverted Data Output 3A 57 GND Ground 1A 1 58 GND Ground 1A 1 59 CML-O Rx6n Receiver Inverted Data Output 3A 60 CML-O Rx6p Receiver Non-Inverted Data Output 3A	46		Reserved	For future use	3A	3
49 VS2 Module Vendor Specific 2 3A 3 50 VS3 Module Vendor Specific 3 3A 3 51 GND Ground 1A 1 52 CML-O Rx7p Receiver Non-Inverted Data Output 3A 53 CML-O Rx7n Receiver Inverted Data Output 3A 54 GND Ground 1A 1 55 CML-O Rx5p Receiver Non-Inverted Data Output 3A 56 CML-O Rx5n Receiver Inverted Data Output 3A 57 GND Ground 1A 1 58 GND Ground 1A 1 59 CML-O Rx6n Receiver Inverted Data Output 3A 60 CML-O Rx6p Receiver Non-Inverted Data Output 3A	47		VS1	Module Vendor Specific 1	3A	3
50 VS3 Module Vendor Specific 3 3A 3 51 GND Ground 1A 1 52 CML-O Rx7p Receiver Non-Inverted Data Output 3A 53 CML-O Rx7n Receiver Inverted Data Output 3A 54 GND Ground 1A 1 55 CML-O Rx5p Receiver Non-Inverted Data Output 3A 56 CML-O Rx5n Receiver Inverted Data Output 3A 57 GND Ground 1A 1 58 GND Ground 1A 1 59 CML-O Rx6n Receiver Inverted Data Output 3A 60 CML-O Rx6p Receiver Non-Inverted Data Output 3A	48		VccRx1	3.3V Power Supply	2A	2
51 GND Ground 1A 1 52 CML-O Rx7p Receiver Non-Inverted Data Output 3A 53 CML-O Rx7n Receiver Inverted Data Output 3A 54 GND Ground 1A 1 55 CML-O Rx5p Receiver Non-Inverted Data Output 3A 56 CML-O Rx5n Receiver Inverted Data Output 3A 57 GND Ground 1A 1 58 GND Ground 1A 1 59 CML-O Rx6n Receiver Inverted Data Output 3A 60 CML-O Rx6p Receiver Non-Inverted Data Output 3A	49		VS2	Module Vendor Specific 2	3A	3
52 CML-O Rx7p Receiver Non-Inverted Data Output 3A 53 CML-O Rx7n Receiver Inverted Data Output 3A 54 GND Ground 1A 1 55 CML-O Rx5p Receiver Non-Inverted Data Output 3A 56 CML-O Rx5n Receiver Inverted Data Output 3A 57 GND Ground 1A 1 58 GND Ground 1A 1 59 CML-O Rx6n Receiver Inverted Data Output 3A 60 CML-O Rx6p Receiver Non-Inverted Data Output 3A	50		VS3	Module Vendor Specific 3	3A	3
53 CML-O Rx7n Receiver Inverted Data Output 3A 54 GND Ground 1A 1 55 CML-O Rx5p Receiver Non-Inverted Data Output 3A 56 CML-O Rx5n Receiver Inverted Data Output 3A 57 GND Ground 1A 1 58 GND Ground 1A 1 59 CML-O Rx6n Receiver Inverted Data Output 3A 60 CML-O Rx6p Receiver Non-Inverted Data Output 3A	51		GND (Ground	1A	1
54 GND Ground 1A 1 55 CML-O Rx5p Receiver Non-Inverted Data Output 3A 56 CML-O Rx5n Receiver Inverted Data Output 3A 57 GND Ground 1A 1 58 GND Ground 1A 1 59 CML-O Rx6n Receiver Inverted Data Output 3A 60 CML-O Rx6p Receiver Non-Inverted Data Output 3A	52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A	
55 CML-O Rx5p Receiver Non-Inverted Data Output 3A 56 CML-O Rx5n Receiver Inverted Data Output 3A 57 GND Ground 1A 1 58 GND Ground 1A 1 59 CML-O Rx6n Receiver Inverted Data Output 3A 60 CML-O Rx6p Receiver Non-Inverted Data Output 3A	53	CML-O	Rx7n	Receiver Inverted Data Output	3A	
56 CML-O Rx5n Receiver Inverted Data Output 3A 57 GND Ground 1A 1 58 GND Ground 1A 1 59 CML-O Rx6n Receiver Inverted Data Output 3A 60 CML-O Rx6p Receiver Non-Inverted Data Output 3A	54		GND	Ground	1A	1
56 CML-O Rx5n Receiver Inverted Data Output 3A 57 GND Ground 1A 1 58 GND Ground 1A 1 59 CML-O Rx6n Receiver Inverted Data Output 3A 60 CML-O Rx6p Receiver Non-Inverted Data Output 3A	55	CML-O	Rx5p	Receiver Non-Inverted Data Output	3A	
58GNDGround1A159CML-ORx6nReceiver Inverted Data Output3A60CML-ORx6pReceiver Non-Inverted Data Output3A	56	CML-O		Receiver Inverted Data Output	3A	
59 CML-O Rx6n Receiver Inverted Data Output 3A 60 CML-O Rx6p Receiver Non-Inverted Data Output 3A	57		GND	Ground	1A	1
60 CML-O Rx6p Receiver Non-Inverted Data Output 3A	58		GND	Ground	1A	1
60 CML-O Rx6p Receiver Non-Inverted Data Output 3A	59	CML-O	Rx6n	Receiver Inverted Data Output	3A	
	60	CML-O	Rx6p	*	3A	
	61		-	Ground	1A	1
62 CML-O Rx8n Receiver Inverted Data Output 3A		CML-O	Rx8n		3A	
63 CML-O Rx8p Receiver Non-Inverted Data Output 3A	63			*		
64 GND Ground 1A 1			•			1

OCRE COMMUNICATION LIMITED	DESIGN	CHECK	CHECK	APPROVAL
Web: www.ocrecom.com				
E-Mail: sales@ocrecom.com				
Add. Dist.A, Building 6, Bay on the six block, Xixiang,				
Baoan Dist, Shenzhen, China 518000				
Tel: +86 755 2335 3855 Fax: +86 755 2335 3855				

	DS10-Q002 Final Rev.: 20	23-02-22	
Product	400G QSFP-DD transceiver OQ serials	Ver.	001
D (N	0005241	Rev. 000	
Part No.	OQQS341	Page	12 / 14

65		NC	No Connect	3A	3
66		Reserved	For future use	3A	3
67		VccTx1	3.3V Power Supply	2A	2
68		Vcc2	3.3V Power Supply	2A	2
69		Reserved	For Future Use	3A	3
70		GND	Ground	1A	1
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	3A	
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A	
73		GND	Ground	1A	1
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input	3A	
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A	
76		GND	Ground	1A	1

Notes:

- 1. GND is the symbol for signal and supply (power) common for the QSFP-DD module. All are common within the module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, Vcc1 and VccTx, VccRx1, Vcc2 and VccTx1 are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 4 below. VccRx, Vcc1 and VccTx, VccRx1, Vcc2 and VccTx1 may be internally connected within the module in any combination. The connector pins are each rated for a maximum current of.

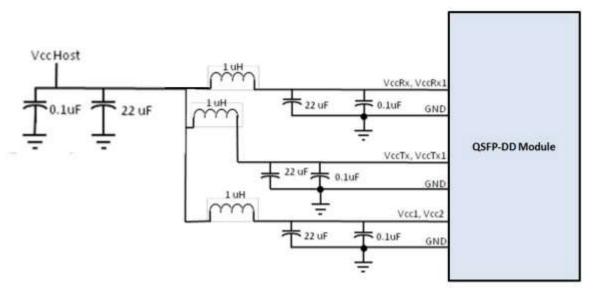
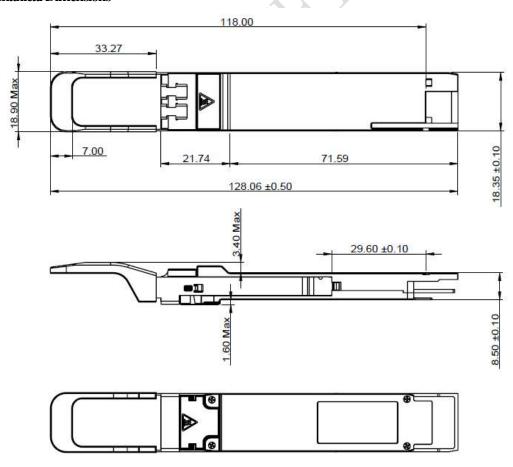


Figure 4 Power supply Filter

OCRE COMMUNICATION LIMITED	DESIGN	CHECK	CHECK	APPROVAL
Web: www.ocrecom.com				
E-Mail: sales@ocrecom.com				
Add. Dist.A, Building 6, Bay on the six block, Xixiang,				
Baoan Dist, Shenzhen, China 518000				
Tel: +86 755 2335 3855 Fax: +86 755 2335 3855				

	Datasheet	DS10-Q002 Final Rev.: 2023-02-22		
Product	400G QSFP-DD transceiver OQ serials	Ver.	001	
D (N	0005341	Rev.	000	
Part No.	OQQS341	Page	13 / 14	


3. Reserved or for future use or Vendor's specification.

9. Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Parameter	Symbol	Min	Max	Unit	Notes
Temperature monitor absolute error	DMI_Temp	-3	+3	degC	Over operating temp
Supply voltage monitor absolute error	DMI_VCC	-0.1	0.1	V	Full operating range
Channel RX power monitor absolute error	DMI_RX	-3	3	dB	Per channel
Channel Bias current monitor	DMI_Ibias	-10%	10%	mA	Per channel
Channel TX power monitor absolute error	DMI_TX	-3	3	dB	Per channel

10. Mechanical Dimensions

OCRE COMMUNICATION LIMITED	DESIGN	CHECK	CHECK	APPROVAL
Web: www.ocrecom.com				
E-Mail: sales@ocrecom.com				
Add. Dist.A, Building 6, Bay on the six block, Xixiang,				
Baoan Dist, Shenzhen, China 518000				
Tel: +86 755 2335 3855 Fax: +86 755 2335 3855				

Datasheet		DS10-Q002 Final Rev.: 2023-02-22		
Product	400G QSFP-DD transceiver OQ serials	Ver.	001	
Part No.	OQQS341	Rev.	000	
		Page	14 / 14	

ESD

This transceiver is specified as ESD threshold 1KV for high speed data pins and 2KV for all others electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Laser Safety

This is a Class 1 Laser Product according to IEC 60825-1:2014. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007)

Caution: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

11. Module Ordering information

PN	Description
OQQS341	400G QSFP-DD LR4 1310nm-CWDM 10KM LC DDMI 0~70 °C

OCRE COMMUNICATION LIMITED	DESIGN	CHECK	CHECK	APPROVAL
Web: www.ocrecom.com				
E-Mail: sales@ocrecom.com				
Add. Dist.A, Building 6, Bay on the six block, Xixiang,				
Baoan Dist, Shenzhen, China 518000				
Tel: +86 755 2335 3855 Fax: +86 755 2335 3855				